This article was downloaded by:
On: 24 January 2011
Access details: Access Details: Free Access
Publisher Taylor \& Francis
Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 3741 Mortimer Street, London W1T 3JH, UK

Journal of Liquid Chromatography \& Related Technologies

Publication details, including instructions for authors and subscription information:
http://www.informaworld.com/smpp/title \sim content=t713597273

GPC Analysis of Ethylene-Propylene Copolymers

Ke-Qiang Wang ${ }^{\text {a }}$; Shi-Yu Zhang ${ }^{\text {a }}$; Jia Xu ${ }^{\text {ad }}$; Yang Li ${ }^{\text {a }}$
${ }^{a}$ Research Institute of Chemical Industry He Ping Li, Beijing, People's Republic of China

To cite this Article Wang, Ke-Qiang, Zhang, Shi-Yu, Xu, Jia and Li, Yang(1982) 'GPC Analysis of Ethylene-Propylene Copolymers', Journal of Liquid Chromatography \& Related Technologies, 5: 10, 1899 - 1920
To link to this Article: DOI: 10.1080/01483918208062861
URL: http://dx.doi.org/10.1080/01483918208062861

PLEASE SCROLL DOWN FOR ARTICLE

```
Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf
This article may be used for research, teaching and private study purposes. Any substantial or
systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or
distribution in any form to anyone is expressly forbidden.
The publisher does not give any warranty express or implied or make any representation that the contents
will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses
should be independently verified with primary sources. The publisher shall not be liable for any loss,
actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly
or indirectly in connection with or arising out of the use of this material.
```

GPC ANALYSIS OF ETHYLENE-PROPYLENE COPDLYMERS*
Ke-Qiang Warg, Shi-Yu Zharg, Jia $X u$, Yang Li Research Irstitute of Chemical Industry
He Ping Li, Beijing, Pecple's Republic of China

ABSTRACT

Determination of the values of K and alpha of the Mark-Houwink equatiori by applying the universal calibration curve and using a trial and error method was performed with samples af ethylene - propylere copolymens with broad MW distributians and different intrinsic viscosities. The follewing equation was obtained, correlating K with compasition of ethylene-propylere copolymer and alpha:
$1 \mathrm{ogK}=1 \mathrm{ag}(5.755-4.65 \mathrm{C} 3)-5.75$ alpha where C 3 is the mole percent of propylerie in the copalymer, alpha is a value withir the rarge of 0. 73 and 0. 755 (i.e., K and alpha are dependent upor each other). Values of intrinsic viscosity or molecular weight determined by means of the universal calibration curve agree well with those determiried by solutior viscosity, light scatteririg, arid osmometry.

INTRODUCTION

GPC experiments have showr that the universal calibration method proposed by Benoit (1) is valid for

[^0]```
widely different species. Orie, therefore; car
calculate the weight- and number-average molecular
weights and molecular weight distribution (MWD) from
the uriversal calibration curve if the Mark-Heuwirk
relatiorship for the particular polymem-solverit pair is
krowr. However, in the case of ethylene-propylene
copolymer, the monomer cornterits have ari effect ar, the
values of K ard alpha, especially the former (}2,3)\mathrm{ .
Thus, it is difficult to determire, by GPC, the
molecular weight and MWD of the copolymer. So far, a
satisfactory method for solving this problem is yet to
be fourid.
```

In our experiments, a rumber of ethylene propylene copolymers, havirig broad MWD's arid differerit intrinsic viscosities, were used as calibration samples. The intrinsic viscasity and GPC chromatogram for each sample were measured in o-dichloroberzene (ODCB) at 135 deg. $C$. ard the values of $K$ and alpha were determined by the universal calibration and trial and error method. However, the column peak spreading effect was ignored.

The experimental data were treated by applying regression arialysis and the following relatiuonship was set up:

$$
\log K=\log (5.755-4.65 \mathrm{c} 3)-5.75 \alpha
$$

where $C 3$ is the mole percent of propylene in the copolymer; alpha caritake ary value between 0.73 and 0.755.

## EXPERIMENTAL

## Materials:

```
Ethylere and propylene copolymerization products; prepared by vanadium catalysis, were used as samples; they were purified by extraction with metharol.
The propylere coriterits of the samples (CJ-mole\%)
were 50. \(8+/-1 \%\) (six samples), \(45.3+/-1.5 \%\) (six samples), \(40.1+/-1 \%\) four samples), and \(36+/-1 \%\) (six smpples), respectively.
The solvent employed for all experiments described in this paper was distilled ODCE.
```

Intrinsic Viscosity:

Intrinsic viscosities were measured in odCE at 135
deg. C. using Ubbelohde viscometers with flow times greater than 100 sec. For some of the data, the required extrapolation to zero conceritration was made from measuremerits at five concentrations; for others, however, only a single measurement was made and Cherg's equation was employed (4) for calculating the iritrinsic
viscosity. The results have showr that; for the same sample, there was not much difference between the two methods.

Gel Permeation Chromatography:

The instrumerit employed for measuring the GPC data was a Waters Model EOQ GPC; with Styragel-packed columns. Most of the measuremerits were made with a five-column assembly (10E7, 10EE, 10ES, 10E4, and $10 E 3$ Angstroms, respectively). However, some measuremerits were done with a four-column assembly (10E7, 10E6, 10E4, and 10E3). ODCB was used as molvent; the flaw rate was $1 \mathrm{ml} / \mathrm{min}$.

In order to minimize error, the copolymer solution, after determination of iritrinsic viscosity, was divided into four parts, which were then separately injected irito the GPC instrument. Thus, faum GPC chromatograms were obtaired from each sample. These were then individually normalized, and the average value

$$
1 / 4 \sum_{j=1}^{4}\left(H_{i} / \sum_{i=1}^{n} H_{i}\right)_{j}=w_{i}
$$

of the rormalized height of the $i$-th courit was taken.

$$
\left(\mathrm{H}_{\mathrm{i}} / \Sigma \mathrm{H}_{\mathbf{i}}\right)
$$

## Methods:

Weiss (5) has proposed that the $K$ and alpha of the Mark-Houwink relationship may be determined by using two polymers havirg relatively braad MWD with different intrinsic viscosities. The procedure is as fallows:

$$
\begin{align*}
& J_{i}=[\eta]_{i} M_{i}  \tag{1}\\
& {[\eta]_{i}=\mathrm{KM}_{i}^{\alpha}=K^{1 / 1+\alpha_{J}}{ }_{i}^{\alpha / 1+\alpha}}  \tag{2}\\
& {[\eta]=K^{1 / 1+\alpha_{\sum W_{i}} J_{i}^{\alpha / 1+\alpha}}}  \tag{3}\\
& \frac{[\eta]_{1}}{[\eta]_{2}}=\frac{\sum_{1} W_{1 i} J_{i}^{\alpha / 1+\alpha}}{\sum_{1} W_{2 i} J_{i}^{\alpha / 1+\alpha}} \tag{4}
\end{align*}
$$

where wi and $[\eta]_{i}$ are, respectively, the weight-fraction and the intrinsic viscosity of the $i$-th species; [ 7 ] is the intrinsic viscosity of the polymer. Therefore, using wi's from GPC, Ji's from the universal calibration curve, and [ $\eta$ ] determined by viscometry, one can solve for alpha ard $K$ from equations (4) and (3), respectively, and ultimately calculate weight- amd number-average molecular weights according to the defirition for molecular weight af polymer.

In applying Weiss's method to ethylere - propylere copalymers, besides errors inherent in the determination of intrinsic viscosity and the GPC chromatogram, compositional distribution might also
introduce errors. Our experiments have shown that the calculated alpha and $K$ from data based ori samples 1 and $\sum$ might not be appropriate for other samples. Therefore, we employ samples having the same compositions but different intrirsic viscasities for determinig alpha and $K$ by means of a trial and error method. There are two steps in this procedure. In the first step, let

$$
\begin{equation*}
\left|\left(\frac{[\eta]_{1}}{[n]_{2}}-\frac{\sum_{i} W_{1 i} J_{i}^{\alpha / 1+\alpha}}{\sum_{i}^{\sum W_{2 i} J_{i}^{\alpha / 1+\alpha}}}\right) \cdot \frac{[\eta]_{2}}{[\eta]_{1}} \times 100\right| \leqslant u(0<u \varsigma 7) \tag{5}
\end{equation*}
$$

After determination of the intrinsic viscosity, the GPC chromatogram and the universal calibration curve, using polystyrene standards (the intrinsic viscosity molecular weight relationship of polystyrere in ODCE at 135 deg. C. is $[\mathrm{n}]=1.38 \times 10^{-4} \mathrm{M}^{0.70}$ ), the $\alpha$ values (denoted as $\alpha_{0}$ ) may be calculated from equation (5) with given values of $u$ by an iteration method with a computer. Since molecular chains of ethylerie - propylerie copolymer are flexible, arid ODCB is a good solvent, the range of iteration for alpha values may be set as 0.59-0.9. Ey substituting $\alpha_{0}$ and the irtririsic viscosity as well as the GRC data of sample 1 inta equation (3), $\mathrm{K}_{1}$ cari be calculated. Similarly, $K_{2}$ for sample $E$ may be obtained. Since $\alpha_{0}$
is obtained from the inequality (5), $K_{1}$ and $K_{2}$ are not equal. Take $K_{3}$ as the average of $K_{1}$ and $K_{2}$. Apply $\alpha_{0}$ ard the experimental data of sample 3 to detemmine $K_{4}$ from equation (3). Take the average of $K_{1}$, $K_{2}$, arid $K_{4}$ as $\mathrm{K}_{5}$. Calculate, by means of the iteration method, the value of alpha (derioted as $\alpha_{1}$, from equation (6):

$$
\begin{array}{r}
\mid\left([\eta]_{3}-K_{5}^{1 / 1+\alpha_{\Sigma W_{3 i}} J_{i}^{\alpha / 1+\alpha} /[\eta]_{3} \times 100 \mid \leqslant z}\right.  \tag{6}\\
(0<z \leqslant 7)
\end{array}
$$

Substitute $\alpha_{1}$ and experimental data of samples $1, S_{\text {, }}$ and 3 ; respectively, into equation (3) to calculate $K_{6}$ , $K_{7}$, and $K_{8}$. Take $K_{9}$ as the average of these three values. Take the average of $\alpha_{0}$ and $\alpha_{1}$ to obtain $\alpha_{2}$ and, subsequertly, $K_{10}, K_{11}, K_{12}$ and their average value $K_{13}$. Thus, 13 groups of $K$ and alpha
$\left(\alpha_{0}, K_{1}, K_{2}, K_{3}, K_{4}\right.$, and $K_{5} ; \alpha_{1}, K_{6}, K_{7}, K_{8}$, and $K_{9}$;
$\alpha_{2}, K_{10}, K_{11}, K_{12}$, and $K_{13}$ )
were obtaimed. Firially, using the corresponding values for $K$ and alpha of each group, arid applying equation (3), the intrimsic viscosity [ $n$ ] of each sample having the same composition may be calculated. Then, the relative enror between [ $n$ ] and the measured value of the intrinsic viscosity [ $\eta$ ] is calculated and is used as a criterion for the preliminary selection of $K$ arid alpha.
Assume new values for $u$ and $z$, repeat the foregoing procedure until the accumulation of sufficient data.
Exchange the experimental data of sample 3 in equation (6) with that of sample 1 or sample 2 in equation (5), or, alternatively, substitute the experimental data of another sample of the same composition for the corresponding ones in (5) or (6). Calculate as before using a computer. The flow diagram for the iteration calculation is preserited in Figure 1.
The result of the above treatmerit has showr that, within the range of allawance error of intrinsic viscosity, most of the ethylene - propylene copolymers of different composition have the same value of alpha. It has been reported in the literature that alpha is independent of composition $(2,3)$. Therefore, we treated the experimental data with respect to alpha ard thereby simplified the situation. Thus, with alpha within the range of $0.73-0.78$, we obtained 11 groups of alpha's and the corresponding $K$ ' $s$, $K$ being dependent upon composition. The group of experimental data with alpha value of 0.745 are tabulated in Table 1.
After having obtained 11 groups of values of $k$ and alpha, we proceeded to apply a trial ard error approach to determine the optimal value of $K$ corresponding to each value of alpha. Again, take alpha $=0.745 \mathrm{as}$ an


FIGURE 1
Flow Diagram of Iterative Calculation. $h \neq$ height of interval from Baseline; $v=$ elution volume (count number; $t=$ total count intervals; $[n]=$ intrinsic viscosity of sample; $n=$ number of samples; $c_{1}$ and $c_{2}$ are the intercept and slope of the universal calibration curve.

## TABLE I

## Composition of Ethylene-Propylene Coploymers and Values of K Corresponding to $\alpha=0.745$

| Composition of $\mathrm{C}_{3}, \mathrm{~mol} \%$ | $\frac{\mathrm{Kx} \mathrm{10}}{}{ }^{4}$ |
| :---: | :---: |
| 50.8 | $1.72-1.90$ |
| 45.3 | $1.76-1.97$ |
| 40.1 | $1.97-2.07$ |
| 36.0 | $2.03-2.15$ |

example. When the C 3 content of the copalymer is $50.8 x$, the corresponding value of $K$ falls between 1.72 - 1.90. If alpha remains constarit, the value of $k$ increases by constant steps. Calculate the relative erron of the intrinsic viscosity of each sample and the standard deviation

$$
\sigma=\sqrt{\sum_{\mathrm{i}}\left([\eta]_{\mathrm{c}}-[n]_{\mathrm{d}}\right)_{\mathrm{i}}^{2} / \mathrm{n}}
$$

where $n$ is the number of samples. The $K$ value is then
determined on the basis of the minimum value of $\sigma$;
in the case of successive appearance of two equal
values of minimum $\sigma$, the $k$-value should be
determined by reference to all the corresponding
relative errors of the intrinsic viscosities of the
various samples of that particular composition. The

```
same procedure was emplcyed in the treatment of
experimental data with the C3 contents of the polymer
samples equal to 45. 3%, 40. 1%, arid 36%, respectively.
 The remaining 10 groups of K and alpha values were
treated with the same procedure; the results are
tabulated in Table II.
```


## RESULTS AND DISCUSSION

It can be seen from Table II that, when alpha is greater than 0.75, the standand deviation of the intrinsic viscasities of the ethylene - prapylere copolymers having different compositions tend ta increase with alpha. For samples having compositions of $50.8 \%$ and $36 \%$ minimurn values of $\sigma$, corresporidirig to alpha values betweer 0.73-0.755, have lower values than the rest. The relative errors of intrinsic viscosities calculated from different groups of values of $K$ and alpha show little deviation. It may be inferred from Table III that most of the iritrinsic viscosity deviations for the group of data with alpha = Q. 745 as an example are below $7 \%$ arid that the determined values of $K$ and alpha are applicable to all ethyleme - propylene copolymers havirig molecular weights of $10 E 5$ to 10EG, MWD' 5 (Mw/Mr) of 3.2 to 12.9; and GPC chromatograms of either single peak or double peaks.
TABLE II
Optimal Value of K and Stad. Deviation Corresponding to Composition of Ethylene-Propylene Coploymer and Alpha.
Alpha
$\frac{0.74}{1.94} \frac{0.745}{1.78-} \frac{0.75}{1.66-1.56}$

0.204

$\begin{array}{lll}\text { N్ర్ర } & \text { Nे } & \stackrel{1}{N} \\ 0 & \text { ri } \\ 0\end{array}$


$\begin{array}{ll}0.060 & 0.060 \\ 1.50 & 1.40\end{array}$


$\begin{array}{ll}0.199 & 0.200 \\ 1.52 & 1.42\end{array}$

$\begin{array}{ll}0.059 & 0.060 \\ 1.72 \quad 1.60\end{array}$
0.1230 .123
0.1980 .199
N
-
+
+
-
$\stackrel{\circ}{7}$
$\stackrel{\infty}{\stackrel{\infty}{-}}$
0.0590 .059

N
$\underset{\sim}{0}$
$\dot{0}$
$\stackrel{N}{*}$
$\dot{0}$
$660^{\circ} \mathrm{O} 960^{\circ} 0$
0.0590 .058



| $\stackrel{1}{0}$ |  |
| :--- | :--- |
| $\stackrel{y}{*}$ | N. |
| $\dot{0}$ | ヘั |

0.194

-

0.196
$2.26-$
2.28

0.058

N
-
$\bigcirc$
-
-
ฺ
$\stackrel{H}{4}$
安

TABLE III
Examples of Viscosity Deviation and Molecular Weight Calculated from the Determined Values of K and alpha (alpha $=0.745$ )

| Comp. $\mathrm{C}_{3}-\mathrm{mol} \%$ | Sample <br> No. | Type <br> Peak $[\eta]_{\mathrm{d}} \mathrm{Kx10}{ }^{4}$ | $\begin{aligned} & \left(M_{w}\right) \\ & 10^{-4} \end{aligned}$ | $\left(M_{w} / M_{n}\right)_{c}$ | $\frac{[n]_{c}-[n]_{d}}{[n]_{d}} \%$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 50.8 | 1 | doub 4.221 .80 | 99.7 | 12.9 | 2.67 |
|  | 2 | doub 3.621 .80 | 85.3 | 6.98 | 8.92 |
|  | 3 | sing 1.351 .80 | 22.1 | 4.81 | 4.41 |
|  | 4 | doub 4.521 .80 | 93.2 | 9.30 | -5.68 |
|  | 5 | sing 2.481 .80 | 42.1 | 7.39 | -5.89 |
|  | 6 | doub 0.901 .80 | 10.3 | 5.84 | -6.65 |
| 45.3 | 7 | doub 2.171 .86 | 33.8 | 4.96 | -6.60 |
|  | 8 | doub 1.691 .86 | 23.9 | 3.82 | -4.79 |
|  | 9 | sing 1.291 .86 | 17.8 | 2.58 | 4.76 |
|  | 10 | doub 4.331 .86 | 97.1 | 9.72 | 3.32 |
|  | 11 | sing 1.831 .86 | 25.8 | 5.28 | -4.79 |
|  | 12 | sing 1.681 .86 | 24.9 | 3.19 | 0.62 |
| 40.1 | 13 | doub 3.072 .04 | 50.1 | 4.55 | -0.30 |
|  | 14 | doub 2.242 .04 | 32.1 | 5.78 | -1.64 |
|  | 15 | doub 2.952 .04 | 48.4 | 5.69 | -0.86 |
|  | 16 | doub 2.112 .04 | 37.1 | 9.47 | 6.29 |
| 36.0 | 17 | sing 3.872 .10 | 64.4 | 4.51 | 0.17 |
|  | 18 | sing 2.832 .10 | 43.9 | 5.72 | 4.23 |
|  | 19 | doub 1.772 .10 | 28.6 | 6.81 | 7.84 |
|  | 20 | doub 3.072 .10 | 45.8 | 5.03 | -1.22 |
|  | 21 | sing 2.652 .10 | 34.2 | 4.79 | -8.72 |
|  | 22 | doub 1.432 .10 | 16.6 | 4.25 | 1.84 |

```
 Usirg data in Table II, if the values of K are
plotted against copolymer composition (C3-molex), a
linear relationship is obtained.
 With a view to testing the validity of the linear
relationship between K and copolymer composition, we
determined the intrinsic viscosity and GPC chromatogram
of an additional five samples and, by interpolation ard
extrapolation of the straight line of Figure }2\mathrm{ , the
corresponding values of }K\mathrm{ and alpha were obtained.
Intrinsic viscosity errors of the various samples were
then calculated and the results are tabulated in Table
IV. Moreover, we determined the number-average
molecular weight, by osmometry, of samples }34\mathrm{ and 25
using a Knauer membrane osmometer and the
weight-average molecular weight of sample 24 using a
low-angle laser light-scatteririg photometer {Type
KMX-6, Chromatix, Inc., USA). These are compared with
data obtained by GPC (after corrections for peak
spreading effects) as shown in Table V.
 From Tables IV and V, it is apparent that
deviations in intrinsic viscosities and molecular
weights of the different samples all fall within the
permissible range, and the data calculated from
different groups of }k\mathrm{ ard alpha show little variatior.
It is thus inferred that the linear relationship, as
shown in Figure 2 is reliable and is applicable to
```



FIGURE 2
Relationship Between K and Propylene Content of EP-copolymers. -x-: Experimental values; -o-: Values of linear interpolation or extrapolation; $1: \alpha=0.735 ; 2: \alpha=0.740 ; 3: \alpha=0.745 ;$ 4: $\alpha=0.750$.
samples with a narrow MWD, i.eng equal to 1.69 (see Table V).

Ir order to further irvestigate the relationship between $k$, alpha, and copolymer composition, we treated the data by means of regression analysis, i.e., to plot log $K$ against alpha; this resulted in a very good

## TABLE IV

Comparison of Measured Values of Intrinsic Viscosity With Those Calculated Form K \& Alpha as Indicated in Figure 2.

| No. | Comp.$\mathrm{C}_{3}-\mathrm{mol} \%$ | $\alpha=0.75$ |  | $\alpha=0.745$ |  | $\alpha=0.735$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $K \times 10^{4}$ | $\frac{[n]{ }_{c}-[n]_{d_{0}}}{[n]_{d}}$ | Kx | $\frac{[n]_{c}-[r}{[n]_{d}}$ |  | $\frac{[n]_{c}-[r}{[n]_{d}}$ |
| 23 | 30.0 | 2.12 | -5.49 | 2.26 | -5.45 | 2.56 | -5.54 |
| 24 | 49.5 | 1.68 | -5.43 | 1.80 | -5.40 | 2.04 | -6.56 |
| 25 | 53.9 | 1.58 | 1.68 | 1.68 | 1.58 | 1.90 | 1.39 |
| 26 | 55.4 | 1.54 | 6.30 | 1.64 | 6.30 | 1.86 | 6.63 |
| 27 | 55.4 | 1.54 | -0.43 | 1.64 | -0.43 | 1.86 | -0.12 |

TABLE V
Comparison of Data From GPC and Absolute Methods.

| No. | $\mathrm{Kx10}{ }^{4}$ | Alpha | $\begin{aligned} & \left(M_{n}\right)_{G} \\ & \times 10^{-4} \end{aligned}$ | $\begin{aligned} & \left(M_{n}\right)_{0} \\ & \times 10^{-4} \end{aligned}$ | $\begin{array}{r} \text { Rel } \\ \text { Error } \end{array}$ | $\begin{aligned} & \left(M_{W}\right)_{G} \\ & \times 10^{-4} \end{aligned}$ | $\begin{aligned} & \left(M_{w}\right)_{I} \\ & \times 10^{-2} \end{aligned}$ | Rel. | /M ${ }_{n}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 24 | 2.04 | 0.735 | 29.9 | 29.8 | 0.33 | 63.3 | 62.3 | 1.60 | 2.12 |
|  | 1.92 | 0.74 | 30.1 | 29.8 | 1.00 | 63.3 | 62.3 | 1.60 | 2.10 |
|  | 1.80 | 0.745 | 30.0 | 29.8 | 0.67 | 62.8 | 62.3 | 0.82 | 2.09 |
|  | 1.68 | 0.75 | 30.1 | 29.8 | 1.00 | 62.9 | 62.3 | 0.90 | 2.09 |
| 25 | 1.90 | 0.735 | 13.9 | 13.0 | 7.0 | 23.8 | ---- | ---- | 1.71 |
|  | 1.80 | 0.74 | 14.0 | 13.0 | 7.9 | 23.7 |  |  | 1.69 |
|  | 1.68 | 0.745 | 14.0 | 13.0 | 7.9 | 23.8 | ---- | ---- | 1.70 |
|  | 1.58 | 0.75 | 14.0 | 13.0 | 7.7 | 23.7 | ---- | ---- | 1.69 |

linear fit. The lines were parallel to each other, as shawn in Figures 3 and 4. The following general equation was established from the plots:

$$
\begin{equation*}
\log \mathrm{K}=\mathrm{A}-5.75 \alpha=\log \mathrm{B}-5.75 \alpha \tag{7}
\end{equation*}
$$



FIGURE 3
Relationship Between $K$ and Alpha. $1: C_{3}=36 \% ; \quad 2: C_{3}=45.3 \%$
3: $C_{3}=55 \%$. $3: C_{3}=55 \%$ 。

The relationship between $A, B$, and compositian is shown in Table VI. By plotting B against composition, straight lines as shown in Figure 5 were obtained and, by solving the straight lines graphically, we obtained

$$
\begin{equation*}
B=5.755-4.65 C_{3} \tag{8}
\end{equation*}
$$

Substituting (8) into (7), we obtain


FIGURE 4
Relationship Between $K$ and Alpha. $4: C_{3}=30 \% ; \quad 5: C_{3}=40.1 \%$ 6: $\mathrm{C}_{3}=50.8 \%$.

TABLE VI
Values of $A$ and $B$ in Equation (7)

|  |  |  | $3-\mathrm{mol}$ |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 30.0 | 36.0 | 40.1 | 45.3 | 50.8 | 55.0 |
| A: | 0.635 | 0.610 | 0.590 | 0.555 | 0.533 | 0.500 |
| B: | 4.32 | 4.07 | 3.89 | 3.59 | 3.40 | 3.16 |



FIGURE 5
Relationship Between B of Equation (7) and Propylene Content of EP-Copolymers.

$$
\begin{align*}
\log \mathrm{K}=\log \left(5.755-4.65 \mathrm{C}_{3}\right)- & 5.75 \alpha  \tag{9}\\
& \left(\text { ODCB, } 135^{\circ} \mathrm{C}\right)
\end{align*}
$$

Substituting ( 9 ) into the Mark - Houwirk equation and rearranging,

$$
\begin{array}{r}
{[n]=\left(5.755-4.65 C_{3}\right)\left(\mathrm{M} / 5.623 \times 10^{5}\right)^{\alpha}} \\
\\
\left(\text { (ODCB, } 135^{\circ} \mathrm{C}\right)
\end{array}
$$

Table VII shows that the $K_{c}$ value calculated from (9) agrees well with values of $K$ previously determined. This proves that equation (9) is valid, as is equation

TABLE VII
Comparison of Calculated and Determined Values of $\mathrm{K}\left(10^{-4}\right)$

| Compos'n, |  |  |  |  | Alpha |  |  | 0.775 | 0.78 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{C}_{3}$-mol \% | $\mathrm{K}_{\mathrm{d}}, \mathrm{K}_{\mathrm{c}}$ | 0.73 | 0.735 | 0.745 | 0.75 | 0.755 | 0.76 |  |  |
| 30.0 | $\mathrm{K}_{\mathrm{d}}$ | 2.72 | 2.57 | 2.27 | 2.13 | 2.01 | 1.88 | 1.55 | 1.44 |
|  | $\mathrm{K}_{\mathrm{c}}$ | 2.77 | 2.58 | 2.27 | 2.12 | 1.98 | 1.86 | 1.53 | 1.43 |
| 50.8 | $\mathrm{K}_{\mathrm{d}}$ | 2.20 | 2.02 | 1.80 | 1.68 | 1.56 | 1.46 | 1.18 | $\begin{array}{r} 1.08- \\ 1.10 \end{array}$ |
|  | $\mathrm{K}_{\mathrm{c}}$ | 2.16 | 2.02 | 1.77 | 1.66 | 1.55 | 1.45 | 1.19 | 1.11 |

(10). In fact, intrinsic viscosity calculated from equation (19) agrees well with measured values, with errors generally below 7\%. Moreover, equation (9) shows that $K$ ard alpha are mutually dependent; the logarithm of $K$ is a function of alpha.

Since equations (9) ard (10) are obtained from experimental data through regression arialysis, they are primarily applicable to ethylene - propylene capolymens prepared with a vanadium catalyst system, with propylene contents in the range of $30-55 \%$ and alpha in the range of $0.73-0.755$. The intrinsic viscosity or molecular weight calculated from differert values of alpha approximate mach other.

With the establishment of equatian (9), it is possible to calculate the molecular weight and MWD from GPC chromatogram using the universal calibration curve.

Also, by using equation (10), the viscosity - average molecular weight may be calculated from iritrirsic viscosity data of the samples.

## CONCLUSION

Using ethylene - propylene copolymers of broad moleculam weight distribution and different intrinsic viscosities as samples, and by employing the trial and error method reported in this paper, we have been able to determine the parameters $K$ and alpha of the Mark Houwink equation ands by further treating these by regression analysis, the following relationship is ultimately established:

$$
\begin{array}{r}
\log K=\log \left(5.755-4.65 C_{3}\right)-5.75 \alpha \\
{[\eta]=\left(5.755-4.65 C_{3}\right)\left(M / 5.623 \times 10^{5}\right)^{\alpha}} \\
\left(\text { ODCB, } 135^{\circ} \mathrm{C}\right)
\end{array}
$$

The above relationship-shows that $K$ and alpha are mutually dependent, the logarithm of $K$ is a function of alphas and alpha may be any value between 0. 73 and Q. 755. The above relationship is applicable to ethylene - propyleme copolymers having a weight average molecular weight of $10 E 5$ to 10E6, a Mw/Mri of 1.7 - 12.9s a propylene content of $30-50$ molex ard a GPC curve with either a single peak or two peaks. It
is thus possible to apply universal calibration to calculate molecular weight ard molecular weight distribution from the GPC chromatogram.

ACKNOWLEDGEMENTS

The authors wish to express their tharks to Shi Lianghe for helpful comments; to Ma Shubin for supplying the copolymer samples, and Gao Guoli for helping simplify the computer program.

## REFERENCES

1. Grubisic, Z., et al., J. Polymer Sci.s Part E, S, 753 (1967).
2. Moraglio, G., Chim. Ind.; (Milan), 10, 984 (1959).
3. Dgawa, T., Inaba, T., J. Appl. Polymer Sci., 르, 2979 (1977).
4. Cheng Rongshi, Gaofenzi Tongxuri (Polymer Commurications), 4, 159 (1969).
5. Weiss, A. R., Cohn-Ginsberg, E., J. Polymer Sci., part B, 7, 379 (1969).
6. Evans, J. M., Polymer Eng. Sci.; 13, 401 (1971).

[^0]:    *Presented at the GPC Symposium, Chinese Chemical Society, Guilin, People's Republic of China, June 2-6, 1981.

